Acta Cryst. (1979). B35, 2494-2499

Etude par Diffraction Neutronique en Temps de Vol de la Structure Cristalline AgBi(CrO₄)₂

PAR A. RIOU

Laboratoire de Chimie Minérale, Institut National des Sciences Appliquées, 35031 Rennes CEDEX, France

et G. Roult

Laboratoire de Diffraction Neutronique, Département de Recherche Fondamentale, Centre d'Etudes Nucléaires de Grenoble, BP 85 Centre de Tri, 38041 Grenoble CEDEX, France

(Reçu le 16 février 1979, accepté le 19 juin 1979)

Abstract

The crystal structure of $AgBi(CrO_4)_2$ has been studied by neutron diffraction using a time-of-flight spectrometer equipped with a correlation chopper. The powder sample spectrum we obtained has been investigated in two ways: partial and extended profile analyses. The results found using these two methods are compared. AgBi(CrO₄)₂ crystallizes in the non-centrosymmetric tetragonal space group I4 with $a = b = 5 \cdot 1064$ (3), c =11.9091 (10) Å, V = 310.54 (7) Å³, $d_m = 5.79$ (2), d_c = 5.869 (2) Mg m⁻³ for M_r = 548.79 and Z = 2. This structure is highly analogous to the scheelite CaWO₄. In the AgBi(CrO₄), structure, Ag and Bi atoms occupy two sites similar to that of the Ca atom in the scheelite structure. The present work shows that the Ag and Bi atoms are in an ordered arrangement. In addition, this study has allowed accurate determination of the oxygen positions.

1. Introduction

Une étude récente du système ternaire Ag₂O.Bi₂-O₃. CrO₃ (Gerault & Lecerf, 1979) a permis la mise en évidence d'un chromate double d'argent et de bismuth de formule $AgBi(CrO_4)_2$. L'étude aux rayons X de ce composé, effectuée sur poudre et monocristaux montre que sa structure présente une très nette analogie avec celle d'un composé naturel: la scheelite de formule CaWO₄. Cette étude n'a cependant pas répondu à deux problèmes essentiels concernant cette structure. Elle n'a en effet permis ni de déterminer les positions des atomes d'oxygène, ni de savoir s'il existe ou non un ordre entre les atomes d'argent et de bismuth. Ces deux atomes occuperaient en effet tous deux le même site cristallographique que le calcium dans la structure scheelite. C'est pour tenter de répondre à ces deux questions que nous avons entrepris la détermination de 0567-7408/79/112494-06\$01.00

cette structure par la méthode de diffraction neutronique, *a priori* plus appropriée pour résoudre ce problème.

2. Partie expérimentale

L'étude par diffraction neutronique d'un échantillon polycristallin de AgBi(CrO₄)₂ a été réalisée au Centre d'Etudes Nucléaires de Grenoble sur le réacteur 'Mélusine'. L'appareillage utilisé se compose essentiellement d'un spectromètre à temps de vol muni d'un obturateur statistique. La description et l'étude théorique de l'ensemble du dispositif utilisé a été reporté antérieurement dans trois publications récentes par Roult & Buevoz (1977) et Buevoz & Roult (1977*a*,*b*).

L'échantillon utilisé est une poudre de AgBi(CrO₄)₂ d'un volume de 3 × 10³ mm³ placé dans un tube cylindrique de vanadium de 8 mm de diamètre et de 60 mm de hauteur. L'enregistrement du spectre a été réalisé pour une vitesse de rotation de l'obturateur de 12 000 tours min⁻¹, et pour les valeurs des angles $2\theta_o$ de 45 et 90°. Seul le spectre correspondant à $2\theta_o = 90°$ a été utilisé pour la détermination précise des paramètres et l'étude structurale. L'attribution d'indices *hkl* aux différents pics de diffraction observés sur ce spectre a été effectuée grâce aux valeurs des paramètres de la maille déterminés à partir de l'étude aux rayons X.

Pour interpréter le spectre de diffraction neutronique il faut connaître le spectre du faisceau de neutron incident $i(\lambda)$. Celui-ci a été obtenu en plaçant un détecteur au bore dans le prolongement du faisceau neutronique incident c'est-à-dire pour $2\theta_0 = 0^\circ$.

3. Méthode d'interprétation du spectre de diffraction

Au moment d'entreprendre ce travail nous ne disposions pour interpréter le spectre de diffraction © 1979 International Union of Crystallography neutronique que de programmes permettant une étude du spectre par analyse de profil de raie localisée. C'est la méthode classique dans laquelle les intensitiés des pics de diffraction sont déterminés par la mesure de la surface de la raie, déduction faite du bruit de fond. L'intensité de chaque réflexion hkl est ensuite utilisée comme donnée pour affiner les positions atomiques. Plus récemment il a été possible d'interpréter le spectre de diffraction par la méthode d'analyse de profil de raie généralisée, grâce à un programme mis au point au laboratoire National d'Argonne (USA) (Decker, Beyerlein, Roult & Worlton, 1974; Worlton, Jorgensen, Beyerlein & Decker, 1976). Ce programme a été adapté sur les ordinateurs du CENG par Roult (1978). Cette seconde méthode d'interprétation permet notamment un affinement des paramètres de maille, des positions atomiques, des coefficients d'agitation thermique, à partir de l'ensemble des données du spectre de diffraction. Les deux méthodes d'investigation utilisées sont reportées dans ce mémoire car il nous a paru intéressant de comparer les résultats obtenus par chacune d'elle.

Première méthode: analyse du profil de raie localisée

Une étude détaillée du spectre a été réalisée grâce à un programme qui permet d'ajuster les différents paramètres d'une ou plusieurs gaussiennes théoriques sur les différents pics observés. Ce programme fournit deux renseignements essentiels:

- La position de chaque pic de diffraction avec une précision meilleure que le dixième de canal, ce qui permet une détermination très précise des distances réticulaires et par suite des paramètres de maille.

- L'intensité I_o de chaque raie *hkl*. Cette intensité est obtenue après calcul de l'aire contenue sous la raie, déduction faite du bruit de fond. Celui-ci est assimilé pour un pic ou groupe de pics donné à un segment de droite.

Les paramètres cristallins ont été affinés à partir des valeurs des distances réticulaires d_{hkl} obtenues par cette méthode et après étalonnage grâce à un échantillon de diamant.

Remarquons que le programme d'analyse de profils de raies localisée permet l'analyse d'un groupe de pics composé d'un maximum de 15 pics de diffraction. Ce nombre maximum de 15 ne peut guère être plus élevé car le bruit de fond indépendant du temps est assimilé à un segment de droite alors qu'en réalité il a pratiquement la forme d'un Maxwellien. Cette approximation entraîne un certain nombre de conséquences, quant aux possibilités de cette méthode:

- Il n'est pas possible de continuer l'étude du spectre de diffraction en deçà d'une certaine valeur du numéro de canal d'analyse en raison du très grand nombre de réflexions hkl composant chaque groupe de pics aux faibles longueurs d'onde. -L'approximation du bruit de fond dépendant du temps à un segment de droite pour un groupe de pics donné n'est valable que dans les zones ou le Maxwellien définissant le bruit de fond présente une faible courbure. Compte tenu de ces limitations, il a été possible par cette méthode, de déterminer les intensités de 28 pics ou pics multiples. Dans le cas de ces derniers la détermination individuelle de chaque intensité à l'aide du programme précédent est rendu impossible par la quasi superposition des pics, on introduit alors dans les calculs, l'intensité globale du groupe de pics.

Le calcul du carré du facteur de structure à partir de l'intensité se fait grâce à la relation:

$$|F_{(hkl)}|^2 \propto I_o / [m.i(\lambda) \lambda^4 T(\lambda) E(\lambda)],$$

ou I_o = intensité intégrée observée, m = multiplicité de la réflexion hkl, λ = longueur d'onde, $i(\lambda)$ = intensité du faisceau incident, $T(\lambda)$ = transmission de l'échantillon, $E(\lambda)$ = efficacité du détecteur.

 $i(\lambda) \times T(\lambda)$ a été déterminé à partir de l'enregistrement grâce au détecteur au bore; la variation de l'efficacité de ce détecteur en fonction de λ est pratiquement linéaire. Les différentes valeurs de mF_{hkl}^2 sont ensuite utilisées pour l'affinement de la structure. Cet affinement a été réalisé par la méthode classique de moindres carrés grâces à un programme utilisant la méthode de Busing, Martin & Levy (1962). Les données expérimentales sont introduites sous la forme $m(F_o)^2$ ou $\sum_i m_i (F_o^i)^2$ dans le cas des pics multiples. La validité des hypothèses structurales est testée par le coefficient de désaccord R défini par la relation:

$$R = \left(\sum_{j} m_{j} ||F_{o}|^{2} - m_{j}|F_{c}|^{2}|\right) / \sum_{j} m_{j} |F_{o}|^{2}.$$

Deuxième méthode: analyse de profil de raie généralisée

Le programme d'analyse de profil de raie généralisée permet un affinement direct des positions atomiques, supposées connues approximativement à partir des valeurs expérimentales: spectre de diffraction de l'échantillon et spectre du faisceau incident. L'affinement s'effectue à partir d'une fonction d'ajustage $y(\lambda i)$ qui représente le spectre de l'échantillon. Cette fonction est la somme du bruit de fond et de l'ensemble des pics de diffraction dû à l'échantillon polycristallin et éventuellement son environnement: impuretés, produits d'étalonnage, porte-échantillons *etc*.

Le bruit de fond est assimilé à un Maxwellien de la forme:

$$B_{i} = P_{1} + P_{2} P_{4}^{3/2} \lambda_{i}^{-P_{3}} \exp\left(-P_{4}/\lambda_{i}^{2}\right),$$

ou P_1 représente le bruit de fond indépendant du temps, P_2 , P_3 et P_4 sont des paramètres définissant l'amplitude et la forme du Maxwellien, λ_i est la longueur d'onde diffractée au canal *i*. La valeur théorique de P_3 est de 5. Le bruit de fond peut donc être ajusté à partir de trois variables: P_1 , P_2 et P_4 .

La contribution de l'échantillon et de son environnement au spectre de diffraction est caractérisée par des pics de forme gaussienne et d'amplitude:

$$\alpha_{s}(hkl) = \left[\mu_{s} q^{-4} I_{a}(q)/R(q)\right] \times F_{s}^{2}(hkl),$$

où s = 1, 2... caractérise le matériau diffractant, μ_s est une constante d'échelle qui définit la teneur de ce matériau, R(q) est la résolution ou la largeur à mi hauteur d'un pic centré à $q = 4\pi \sin \theta/\lambda = 2\pi/d$, $I_o(q)$ est l'intensité incidente et $F_s^2(hkl)$ le facteur de structure qui inclut la multiplicité et le coefficient de Debye-Waller. Pour tous les matériaux complémentaires, les facteurs de structure sont supposés connus, et introduits dans les calculs sous forme de données.

La contribution d'un pic donné au canal *i* est de la forme:

$$\alpha_i^{s}(hkl) = \alpha^{s}(hkl) \exp\left\{\left(-4 \ln 2\right) \left[d_i - d^{s}(hkl)\right]^2 / R^2(q_i)\right\},$$

où $d_i = 2\pi/q$ et $d^s(hkl)$ est la distance réticulaire de la réflexion hkl due au sième matériau.

La fonction d'ajustage peut donc s'écrire:

$$y(\lambda_i) = P_1 + P_2 P_3^{3/2} \lambda_i^{-5} \exp(-P_4/\lambda_i^2) + \sum_s \alpha_i^s(hkl).$$

L'affinement de cette fonction par rapport au spectre réel s'effectue par une méthode de moindres carrés non linéaire décrite par Bevington (1969).

La validité de l'affinement, et de la structure est testée par la comparaison directe du spectre observé et du spectre calculé. Le facteur de confiance, exprimé en pourcentage, est défini par:

$$R(\text{profil}) = 100 \sum_{i} |y_i - y(\lambda_i)| / \sum y_i,$$

où y_i est la valeur observée au canal *i*.

Signalons enfin que ce programme permet une correction d'orientation préférentielle établie d'après la théorie de Rietveld (1969).

L'exécution des calculs s'effectue de la manière suivante:

- On procède tout d'abord à l'ajustage du bruit de fond en affinant les paramètres P_1 , P_2 et P_4 .

- On affine ensuite les paramètres définissant le bruit de fond et les paramètres cristallins.

- On affine enfin les positions atomiques et les coefficients d'agitation thermique. Les facteurs de structure sont calculés par un sous programme qui dépend du groupe spatial. Il convient donc d'écrire ce sous programme pour chaque échantillon à étudier.

Pour le présent travail, les calculs étaient simplifiés par le fait que l'échantillon était pratiquement pur et placé dans un tube de vanadium ne donnant pas de pics de diffraction. Cette deuxième méthode d'interprétation du spectre de diffraction présente des avantages par rapport à la première; d'une part elle est plus rapide, d'autre part elle assimile le bruit de fond à un Maxwellien proche du bruit de fond réel ce qui permet de prendre en considération la quasi totalité du spectre. L'affinement s'effectue donc à partir d'un nombre de réflexions *hkl* beaucoup plus élevé, ce qui permet une approche plus précise de la structure.

La principal inconvénient de cette méthode est qu'elle n'est applicable que dans le cas ou l'on possède une bonne hypothèse de structure.

4. Détermination et affinement de cette structure

Comme nous l'avons signalé précédemment, AgBi(CrO₄)₂ présente une parenté structurale avec la scheelite naturelle CaWO₄. Cette dernière cristallise dans le système quadratique et a comme groupe spatial $I4_1/a$ centrosymétrique. Dans cette structure, le calcium occupe le site 4(b) et le tungstène le site 4(a), l'atome d'oxygène se trouve en position générale 16(f). AgBi(CrO₄)₂ cristallise également dans le système quadratique et les clichés réalisés aux rayons X semblent indiquer les mêmes règles d'extinctions que celles caractéristiques du groupe $I4_1/a$: hkl, h + k + l $\neq 2n$; hk0, $h(k) \neq 2n$ et 00l, $l \neq 2n$.

Pour la résolution de cette structure, deux hypothèses ont été envisagées.

Première hypothèse

La structure de AgBi(CrO₄)₂ est isotype de celle de la scheelite, par conséquent les atomes d'argent et de bismuth occupent nécessairement tous deux le même site cristallographique, 4(b), que le calcium dans la structure scheelite. Suivant cette hypothèse, le chrome se trouve en position particulière 4(a) et l'oxygène occupe un site en position générale 16(f). Ceci sous entend un désordre statistique entre l'argent et le bismuth, ce qui veut dire que chaque site cristallographique 4(b) est occupé par un atome moyen $\frac{1}{2}Ag + \frac{1}{2}Bi$.

Deuxième hypothèse

La structure, bien que dérivée de la scheelite n'est plus centrosymétrique et obéit à la symétrie du groupe spatial $I\overline{4}$. Dans ce cas, les atomes d'argent et de bismuth occupent deux sites cristallographiques distincts 2(d) et 2(b). Il en est de même pour le chrome qui se trouve réparti entre deux positions particulières 2(a)et 2(c), et pour l'oxygène qui compte deux atomes en position générale 8(g). Suivant cette hypothèse la structure est parfaitement ordonnée et les paramètres de la maille sont les mêmes que dans le cas de

2496

l'hypothèse précédente. Il est à noter cependant, qu'étant donné le choix du groupe spatial $I\overline{4}$ on devrait observer sur les différents clichés de diffraction les taches telles que hk0: h(k) impair et 00l: $l \neq 4n$, ce qui est contraire aux observations faites sur le spectre où ces différentes réflexions paraissent systématiquement éteintes.

L'affinement des deux hypothèses de structure de $AgBi(CrO_4)_2$ à l'aide des deux méthodes précédentes conduit aux résultats suivants.

La première méthode d'affinement donne un coefficient de confiance R de 6,5% dans le cas de l'hypothèse de groupe spatial $I4_1/a$ et de 7,5% dans le cas de l'hypothèse de groupe spatial $I\overline{4}$. Cette première méthode confirme donc bien la parenté de la structure avec celle de la scheelite mais ne permet pas de conclure entre les deux hypothèses envisagées.

La seconde méthode, en revanche, conduit à un meilleur accord entre spectre observé et spectre calculé [R(profil) = 4,24%] dans le cas du groupe $I\bar{4}$ contre 9,35% pour $I4_1/a$. Ces résultats apparaissent clairement sur les Figs. 1 et 2.

Fig. 1. Spectre observé et spectre calculé (trait continu) dans le cas de l'hypothèse de groupe $I4_1/a$.

Fig. 2. Spectres observe et calcule dans la cas de l'hypothèse de groupe $I\overline{4}$.

Tableau 1. Paramètres atomiques et écarts types

		x	у	Ζ	B (Å ²)
Ag	2(<i>d</i>)	0,5	0	0,25	0,2 (2)
Bi	2(b)	0,5	0,5	0	1,2 (2)
Cr(1)	2(a)	0	0	0	0,0 (4)
Cr(2)	2(c)	0	0,5	0,25	0,0 (4)
D(İ)	8(g)	0,2495 (9)	0,1261 (15)	0,0753 (6)	0,93 (16)
0(2)	8(g)	0,2329 (12)	0,6194 (15)	0,1692 (6)	0,80 (14)

Remarquons par ailleurs que les valeurs des intensités calculées pour les réflexions telles que hk0, h(k)impair et 00l, $l \neq 4n$ sont très faibles ce qui justifie *a posteriori* leur absence sur le spectre de diffraction.

L'ensemble de ces résultats nous amène donc à la conclusion très probable que AgBi $(CrO_4)_2$ possède une structure dérivée de la scheelite naturelle CaWO₄. Cependant, en raison de la présence de deux atomes différents Ag et Bi, qui tous deux occupent le même site que le calcium dans la structure scheelite et qui ont une répartition ordonnée, la structure possède une symétrie quadratique moins élevée et non centrosymétrique $I\overline{4}$. Les résultats obtenus à l'issue de l'affinement des positions atomiques et des coefficients d'agitation thermique isotropes par la seconde méthode sont consignés dans le Tableau 1.

5. Description de la structure

La structure cristalline de AgBi $(CrO_4)_2$ est représentée sur la Fig. 3. On remarque dans cette structure deux types de polyèdres de coordination, d'une part ceux

Fig. 3. Représentation perspective de la structure de AgBi(CrO₄)₂.

Tableau 2. Distances (Å) et angles (°) dans les polyèdres

Code de symétrie

(1) (iii) (1) (v) (vii) (ix) (1) (xi) (1) (xiii) (1)	$\begin{array}{l} 1 - x, y, z \\ y, \bar{x}, \bar{z} \\ 1 - x, 1 - y, z \\ 1 - y, x, \bar{z} \\ \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} - z \\ \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} - z \\ \frac{1}{2} - y, -\frac{1}{2} + x, \frac{1}{2} - z \end{array}$	(11) (iv) (vi) (viii) (x) (xii) (xii) (xiv)	$x, y, z \bar{y}, x, \bar{z} y, 1 - x, \bar{z} \frac{1}{2} - y, -\frac{1}{2} + \bar{x}, 1 - y, z \frac{1}{2} - y, \frac{1}{2} + x x, -1 + y, z $	$x, \frac{1}{2} - z$
Dodécaèdre	[AgO ₈]			
Ag-O(1)	2,526 (6)	$Ag-O(2^{xi})$	2,562 (6)
$Ag = O(1^{\circ})$	2,526 (6)	$Ag = O(2^{\circ})$	2,562 (7) 6)
$Ag-O(1^{ix})$	2,526 (6)	Ag=O(2 Ag=O(2xiv)) 2,562 (7)
O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O O(1)-Ag-O	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} O(1^{v(i)}) - A\\ O(1^{v(i)}) - A\\ O(1^{v(i)}) - A\\ O(1^{v(i)}) - A\\ O(1^{v(i)}) - Ag\\ O(1^{i_x}) - Ag\\ O(1^{i_x}) - Ag\\ O(1^{i_x}) - Ag\\ O(1^{i_x}) - Ag\\ O(2^{x(i)}) -$	$\begin{array}{l} g = O(2^{xi}) \\ g = O(2^{v}) \\ g = O(2^{xiii}) \\ g = O(2^{xiv}) \\ g = O(2^{xi}) \\ g = O(2^{v}) \\ g = O(2^{viii}) \\ g = O(2^{xiv}) \\ g = O(2^{vi}) \end{array}$	76,5 (2) 146,0 (2) 67,3 (2) 77,8 (2) 67,3 (2) 77,8 (2) 77,8 (2) 76,5 (2) 146,0 (2) 98,1 (2)
$O(1^i) - Ag - C$	$D(1^{xi})$ 146,0 (2)	O(2 ^{xi})-Ag	-O(2 ^{xiii})	135,9 (2)
$O(1^{i}) - Ag - O(1^{i}) - A$	$D(2^{v}) = 67,3(2)$ $D(2^{xiii}) = 77.8(2)$	$O(2^{x_1})$ – Ag	$-O(2^{xiv})$	98,1 (2)
O(1) - Ag - O(1) $O(1^i) - Ag - O(1^i)$	$D(2^{xiv}) = 76,5(2)$	$O(2^{\circ}) - Ag$ $O(2^{\circ}) - Ag$	$-O(2^{xiv})$	135,9 (2)
O(1 ^{viii})-Ag-	$-\dot{O}(1^{ix})$ 69,0 (2)	O(2 ^{xiii})–Ă	$g = \dot{O}(2^{xiv})$	98,1 (2)
Dodécaèdre Bi-O(1)	[BiO ₈] 2,467 (6)	Bi-O(2)	2,509 (6)	
$Bi-O(1^{v})$	2,467 (6)	$Bi-O(2^{v})$	2,509 (6)	
$Bi - O(1^{vi})$ $Bi - O(1^{vii})$	2,467 (5) 2,467 (5)	$B_1 - O(2^{v_1})$ $B_1 - O(2^{v_1})$	2,509 (7) 2,509 (7)	
O(1)-Bi-O(0) O(1)-Bi-O(0)	$\begin{array}{c} 2,467(3) \\ (1^{v}) & 137,4(2) \\ (1^{vi}) & 97,6(2) \\ (1^{vi}) & 97,6(2) \end{array}$	$\begin{array}{c} \text{Bi}=\text{O}(2^{\text{vi}})\\ \text{O}(1^{\text{vi}})=\text{Bi}\\ \text{O}(1^{\text{vi}})$	-O(2) -O(2 ^v)	75,2 (2) 147,0 (2)
O(1) - Bi - O(1)	$(1^{(1)})$ 97,6 (2) (2) 67.3 (2)	$O(1^{v_1}) - B_1$ $O(1^{v_1}) - B_1$	$-O(2^{n})$	67,3 (2) 78.6 (2)
O(1) - Bi - O(1)	(2^{v}) 78,6 (2)	$O(1^{vli})$ -Bi	-O(2)	147,0 (2)
O(1)-Bi-O((2 ^{vi}) 147,0 (2)	O(1 ^{vii})—Bi	-O(2 ^v)	75,2 (2)
O(1)-Bi-O((2^{vir}) 75,2 (2)	$O(1^{vii})$ -Bi $O(1^{vii})$ -Bi	$-O(2^{vi})$ $-O(2^{vii})$	78,6(2)
$O(1^{\circ}) - Bi - O(1^{\circ})$	97,0(2) 97,6(2)	O(2)-Bi-	-0(2) 0(2 ^v)	73,1 (2)
O(1 ^v)-Bi-C	(2) 78,6 (2)	O(2)—Bi—	O(2 ^{vi})	130,2 (2)
$O(1^{\circ})-Bi-C$	$0(2^{v})$ 67,3 (2) $0(2^{v})$ 75.2 (2)	O(2)-Bi-	$O(2^{v_{\parallel}})$	130,2(2)
$O(1^{\circ}) - Bi - C$ $O(1^{\circ}) - Bi - C$	(2^{vii}) (2 ^{vii}) 147.0 (2)	$O(2^{\circ})-Bi-O(2^$	$-O(2^{vl})$	130,2(2) 130.2(2)
$O(1^{vi})$ -Bi-O	$D(2^{vii})$ 137,4 (2)	$O(2^{vi})$ -Bi-	$-O(2^{vii})$	73,1 (2)
Tétraèdre Cr	(1)O ₄			
Cr(1)-O(1)	1,686 (5)	O(1)-Cr(1	1)—O(1 ⁱⁱ)	115,7 (3)
$Cr(1) - O(1^{ii})$	1,686 (5)	O(1) - Cr(1)	$1) - O(1^{10})$	106,4(3)
$Cr(1) = O(1^{m})$ $Cr(1) = O(1^{m})$	1,686(7)	O(1) = Cr(1)	$(1) = O(1^{10})$	106,4(3) 106,4(3)
	, .,	O(1")–Cr	$(1) - O(1^{iv})$	106,4 (3)
		O(1 ¹¹¹)–Cr	$(1) - O(1^{iv})$	115,7 (3)
Tétraèdre Cr	(2)O ₄			
Cr(2) = O(2)	1,647 (6)	O(2) - Cr(2)	$2) = O(2^{x})$	108,5 (3)
$Cr(2) = O(2^{*})$ $Cr(2) = O(2^{*i})$	1,047(0) 1.647(7)	O(2) - Cr(2) - Cr(2)	$2) - O(2^{xii})$	110.0 (3)
$Cr(2) - O(2^{xi})$) 1,647 (7)	O(2 ^x)Cr	$(2) - O(2^{xi})$	110,0 (3)
		$O(2^x)$ -Cr	$(2) - O(2^{xii})$	110,0 (3)
		U(2 ^m)Ur	(2)-0(2***)	100,2 (3)

entourant les atomes d'argent et de bismuth qui dérivent de dodécaèdres $[AgO_8]$ ou $[BiO_8]$, d'autre part ceux correspondant au chrome qui possède sa configuration tétraédrique $[CrO_4]$ habituelle. Les distances et les angles caractéristiques de ces différents polyèdres de coordination sont consignés au Tableau 2.

Dans cette structure, chaque dodécaèdre $[AgO_8]$ partage quatre arêtes avec quatre dodécaèdres $[BiO_8]$ différents et réciproquement; chacun des sommets du dodécaèdre $[AgO_8]$ ou $[BiO_8]$ est en commun avec un tétraèdre chromate $[CrO_4]$. D'autre part, chaque oxygène appartenant à un groupement chromate est également lié à un atome d'argent et un atome de bismuth.

Environnement dodécaédrique de l'argent et du bismuth

En examinant le Tableau 2 on s'aperçoit que les grandeurs caractéristiques des polyèdres de coordination de ces deux atomes sont assez voisines. On remarque toutefois que la distance Ag-O est systématiquement plus élevée que la distance Bi-O, les distances moyennes Ag-O et Bi-O valant respectivement 2,54 et 2,49 Å. Ces résultats sont en parfait accord avec les valeurs prévisibles d'après les données les plus récentes (Shannon & Prewitt, 1969, 1970) concernant les rayons ioniques des ions Ag⁺ = 1,29, Bi³⁺ = 1,16 et O²⁻ = 1.26 Å. Ceci constitue à notre avis un argument supplémentaire en faveur de la deuxième méthode d'affinement utilisée.

Environnement tétraédrique du chrome

Les deux atomes de chrome indépendants présents dans cette structure occupent tous deux le centre de tétraèdre. Pour le chrome Cr(1) la longueur de liaison Cr-O est 1,686 Å et les angles de liaison O-Cr-O, qui sont compris entre 106,4 et 115,7° présentent un écart assez sensible par rapport à celui du tétraèdre régulier 109,46°. Dans le cas du chrome Cr(2) la longueur de liaison Cr-O est de 1,647 Å et les angles O-Cr-O sont compris entre 108,5 et 110.0°, cette fois la tétraèdre [Cr(2)O₄] s'écarte moins du tétraèdre régulier que le précédent.

Signalons que les longueurs de liaisons Cr–O dans les deux tétraèdres [CrO₄] sont légèrement plus élevées que celles généralement observées pour ce type de groupement. Ceci est probablement dû au fait que tous les oxygènes chromate sont également liés à un atome d'argent et de bismuth, ce qui provoque un allongement de la liaison Cr–O par rapport à celle du groupement chromate libre. Ce phénomène à déjà été mis en évidence dans d'autres structures de chromate, par exemple dans le chromate de fer trihydraté α (Riou & Bonnin, 1978).

6. Conclusion

La présente étude a permis de répondre à un certain nombre de questions qui se posaient à propos de la détermination de la structure de $AgBi(CrO_4)_2$. Elle a permis en effet:

- de prouver que la structure de AgBi(CrO₄)₂ présente une parenté très nette avec la scheelite naturelle, ce qui constitue un fait original car c'est à notre connaissance le premier exemple de chromate où le groupement [CrO₄] se trouve engagé dans ce type de structure à l'exception de la variété haute pression de CdCrO₄,

- de déterminer les emplacements des atomes d'oxygène avec une précision rarement atteinte dans des structures où coexistent des éléments légers et des éléments lourds,

- de mettre en évidence une structure où des atomes d'argent et de bismuth se trouvent dans des sites cristallographiques très semblables,

- de montrer que ces deux derniers atomes bien que possédant des polyèdres de coordinations très semblables ont une répartition ordonnée dans la structure, ce qui était impossible à prouver par des méthodes de détermination structurale plus 'classiques'.

Remarquons enfin que ces résultats n'ont pu être obtenus que grâce à l'utilisation de la méthode de diffraction neutronique en temps de vol qui s'avère ici une méthode puissante pour résoudre ce type de problème.

Références

- BEVINGTON, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill.
- BUEVOZ, J. L. & ROULT, G. (1977a). Rev. Phys. Appl. 12, 591-596.
- BUEVOZ, J. L. & ROULT, G. (1977b). Rev. Phys. Appl. 12, 597–602.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- DECKER, R., BEYERLEIN, R. A., ROULT, G. & WORLTON, T. G. (1974). *Phys. Rev. B*, **10**, 3584.
- GERAULT, Y. & LECERF, A. (1979). C. R. Acad. Sci. Sér. C. A paraître.
- RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- RIOU, A. & BONNIN, A. (1978). Acta Cryst. B34, 706-709.
- ROULT, G. (1978). Conference on Diffraction Profile Analysis, Kraców, Pologne, août 14-15. A paraître.
- Roult, G. & Buevoz, J. L. (1977). Rev. Phys. Appl. 12, 581–590.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–946.
- SHANNON, R. D. & PREWITT, C. T. (1970). Acta Cryst. B26, 1046–1048.
- WORLTON, T. G., JORGENSEN, J. D., BEYERLEIN, R. A. & DECKER, D. L. (1976). Nucl. Instrum. Methods, 137, 331-337.

Acta Cryst. (1979). B35, 2499-2502

Structure Cristalline de l'Aubertite, AlCuCl(SO₄)₂.14H₂O

PAR DARIA GINDEROW ET FABIEN CESBRON

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Université P. et M. Curie, T16, 4 place Jussieu, 75230 Paris CEDEX 05, France

(Reçu le 16 février 1979, accepté le 19 juin 1979)

Abstract

Aubertite, AlCuCl(SO₄)₂.14H₂O, $M_r = 570$, is triclinic, space group P1, with cell constants a = 6.282 (3), b = 13.192 (5), c = 6.260 (3) Å, a = 91.85 (3), $\beta = 94.70$ (3), $\gamma = 82.46$ (3)°, Z = 1, V = 512 Å³, $d_x = 1.85$ (2), $d_m = 1.815$ (2) Mg m⁻³, |F(000)| = 295, μ (Mo Ka) = 1.53 mm⁻¹. The final R value is 0.043 for 2580 observed reflexions. The atoms of Cu, Al and Cl are on the centers of inversion $\frac{1}{2}, \frac{1}{2}, 0$; $\frac{1}{2}, 0, \frac{1}{2}$ and $0, \frac{1}{2}, \frac{1}{2}$. The structure is built of discrete SO₄ and Al(H₂O)₆ polyhedra and copper ions with 0567-7408/79/112499-04\$01.00

 $(4 + 2)H_2O$ coordination; they are interconnected by a network of hydrogen bonds.

Introduction

L'aubertite est un nouveau chlorosulfate de cuivre et d'aluminium hydraté trouvé dans le gîte de cuivre de Quetena, province d'Antofagasta, Chili (Cesbron, Ginderow, Sichere & Vachey, 1979). Ce gîte est situé dans la partie nord-ouest du désert d'Atacama dont l'aridité est à l'origine de la formation de nombreux © 1979 International Union of Crystallography